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The equations of motion for an Earth satellite were derived in the paper [1].
These equations were used to investigate the effeots of the noncentral char-
acter of the Earth gravitational fleld. The present derivation of the equa~-
tions of motion for a satellite takes into account atmospherlc drag. As was
indicated in [2] (p.92), the atmospheric effects are difficult to take into
account for many methods of trajectory computation.

1. The notation adopted in [1] 1s used in the present paper. The origin
of a fixed system of coordinates 0, x, y, # with unit vectors 4,, 1., i,
is located at the center of the Earth., The z-axls is directed toward the
north pole. The location of a point #(x, Vs z) is determined by means of
the spherical coordinates r @, )

x = rsin®cosh, y = rsin & sin A, z = rcos @ 1.1)

The coordinate trihedron of the spherical system of coordinates is denoted
by €. € €. A point with unit mass (satelllte) 1is moving under the action
of the forces of attraction and atmospheric resistance. The potential.energy
of the point ¥ is of the form ([ 2], p.75)

(%, 9) = —pu—eu® (1 — 393 — ... (u=r" y=—cos®) {1.2)

It is assumed that the Earth's atmosphere rotates about the z-axls with
angular velocity 0(u, y) which depends on u = r! and y = cosd.

It is regarded that the force F of atmospheric reslstance 1s directed
opposite to the satellite velocity relative to the atmosphere

dr
=—p(uT,2)(v—0 XT), Q = iQ ( =g{> (1.3)

Here p 1s the experimental proportionality coefficlient, » is the radius
vector of the point ¥ . The derivation utilizes the orbltal set e, €,n,

where - »
e, =1r't, n={(r Xdr/di)|r Xdr/dt]™, e,=nXe, (1.4)
2. The satellite equation of motion
dir[dt*=—grad Il —p(dr /dt —Q X 1) (2.1)
is transformed into a form convenient for computation. Let us introduce the

t t
angular momentum vector . X dr /d, k = nk (2.2)

Substituting the vector r = re, into (2.1) and dot multiplying by e, we
get
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der [ dt? — k?/ r? = —0lIl / dr — pdr / dt 2.3
Introduce a change of varlables
u=rl dop = u¥dt = r-idt (2.4)
In view of (2.4), Equation (2.3) is transformed into the form
d*u /[ dg? + (p/ u?)du /d@ + hu = —9I1 / du h =Kk (2.5)
Substituting » = re, into (2.2) and cross multiplying by o, we get
de,/dt = r2k X e, de,/dp =k X e, (2.6)
Differentiating (2.6) with respect to o we find
d?e, /d@? + k%, = dk / dp X e, 2.7)

From (2.2) and (2.1) we find
dk/dt = —r X ((0I1/dr)e,. + 1/r (OI1 | 38) eg) — pr X dr/dt 4

o7 X (Q X 1)}= (— OI1 { 98) &, — pk + priQ [is — ¢, (ise, )] (2.8)
Substituting (2.8) into (2.7) and in view of (2.%), we get
d*e, 1 a1 p 9¢,  pQ .
W—[—k%,:—ﬁb—&'ea—-‘ﬁd—q’ wEsXe, (2.9)
Dot multiplying (2.9) by 1, we obtain the equation for v
d2y p dy 1 a1
G T ae T =0 =1y (h = k% 1 =cos §) (2.10)

The quantity #» 1s contained in Equations (2.5) and (2.10). We find the
differential equation for h by dot multiplying (2.8) by 2k 4and taking
into account the substitution (2.4)

dh 2 81 dy _ 2ph |, 2pQ ( dy\*"
=" @ dy  w T A [re—m—(G) (2-11)
At the same tim we utilize the equalities (2.12)
oIl ol dy . all o, de,  BIl dy
a5 k=737 Eg(xgxer)-kcosecﬂ=a—TlsX(kxer)= B e = oy dg
de,\ 12
(ig-k)2 =k? — (is X k)2 =h — |i3 X (er X 716> =
ae, \ |2 de, 2 dy \*
—n=efinzg)| —|ag el | =20 =1 - () 1)

The system of equations (2.5), (2.10), (2.11) is of fifth order and is
complete. For p = O the second form of the equations of motion is obtainea
[1]. The time ¢ 1s found from (2.4) by quadrature.

3. Equation (2.9) can be utilized to find the longitude angle X . Pro-
Jecting it in the x- and y-axes we obtain the differential equations

4’1 P dn 1 oIl Qp
Tq,z'}"ﬁ]ja‘f-hh:;{?r“l’h—;?‘h (3.1)
P13, p dya 1 81 Qp

dgf T e T = gyt
for the directlion cosines vy3s Yz where

1, = sin @ cos A, To = sin O sin A, e, = 1i; + v,i, + i (3.2)

It is more convenlent to determine XA from the relationshilps
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_ Tz ﬂ — fjﬁ 'l_Tl ) 2 2)-1
umk—,n y dq)-—(dq,'h-—dq)'l’z (71 +T’) —“
de . dy\e|"* _ .
(6 X g ) is (1 — 127 = Kia (1 — 737 = [nt - (G5) [Fa—mm e

If y and » are known functions of ¢ , then X 1is found by quadra-
ture. The angular velocity d\/dp , on the strength of (3.1), satisfies

Equation

i(ﬂ)_( 2 dv P)ﬁ 2p

de \dg/ \1—17%dg ut / d¢ ut (3.4)
which can be used for checking during computations. The projection of k
on the »-axls 1s

s dy ’]"' ) .
% =k-ig = [h(1-72)— (d(p) =1~ gg (3.5)
The equation for x 1is found from (3.4) as
dun p Q
g = T rt =1 (3.6)

4, As was indicated in [3] (p.209), there 1s a high velocity air current
moving from west to east at high altitudes around the Earth. This 1is evi-
denced by the fact that the angular velocity O of the atmosphere at high
altitudes can differ substantially from the Earth's rotation rate.

Let us find the expression for (1 by means of motion characteristics
which can be determined by observation. If p = O , then Equations (2.5)
and (2.11) posses the energy integral

E =10+ Ya (du/ dg) + 1y hut (6.1)
For p # O the quantity Z will be variable. From (2.5), (2.11) and
(3.5) we find the equation for X as

dE 2p pQ
dp = wE—I)+ T5x (4.2)

From (3.6) and (4.2) we find 0

dE 1 — 2 dE\?
Q= (ZE — 21 — % Ex_) (n TW) (4.3)

The quantities £, n can be found from observation of the satellite
motion. These quantities change by small amounts during the motion

dr
% =1s-(r X V), E =T +13v?, V= (4.4)

Formula (4.3) is essentlally simplified for equatorial, near circular

trajectories when g =0.

5. Let us conaider a unit sphere with center at the origin of the coor-
dinates 0, x, V¥, £ .

During motion the radius vector r of the point M generates a line on
the sphere the length t of which will be taken as the lndependent variable
dtv=r=2|rxdr| =r2|rxdr/d¢|dt = r?%dt = (h)dg (5.1)

Transforming Equations (2.5), (2.10) and (2.11) with the variable 1T and
denoting differentiation with respect to T Dby primes, we obtaln the system
of differential equations

1 o1 1 a1 pQ

u u=— 5 T —aT'T’u’ + 7 (1 — eyl (5.2)
y 1oem pQ .
VEr=— (=P =1 Ry Rt =) (5.3)

201 , 2 Vh | 2Q

R N M + g = =1k (5.4)
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The first form of the equations of motion [1] is obtained when p = 0 .,

Let us consider the plane of the orbit which contains the vectors g and
dr/dt . The inclination angle of the orbital plane relative to the equato=
rial plane will be denoted by t . From {2.13) we have

oS i = n-iy = kigh™ = (1 — y2 — y'3)" (5.5
Denoting £ = cos { , we obtain from (5.3) Equation for ¢
.y el PQ
£=E§§T—Z+g&;72 (5.6}

Equations {5.2) to {5.4) are especlally convenient for investigation of
polar orbit of the matellite when £ = cos { ~ O . Similarly,we can derive
the equations which correspond to the third form of the sateliite equations
of motion [1]. These equations are convenlent for investigating the near
circular trajectorles.

6. As an example of use of Equations (5.2) to (5.4%) we consider the ques~-
tion of stability of a e¢ircular equatorial orbit. Let during motion 1= O,
Equations (5.2) to (5.4) become

u” + gtk b ou o= b1 [ 4 3eu? 4 O (23}, Bo=2[—Vk + f] 6.1)
g = pu’?, = Qu? {6.2)

It is noted that the quantity s depends only on u . Equations (6,1)
have a stationary solution u,, B which is defined by Equations

u = k1 [u + 3eu? -+ O (e9)),) h=f? 6.3)

The value of the functions for the generating solution y,, he will be
denoted by the subscript o . Equations in variations for (6.1) are of the

form Su” -+ gofoha=t 84’ - (1 + O (€)) Su = — (who™® + O (2)) 8k
. d
8k’ = — goho~"2 8h + 2go;i%§ du (6.4)

The characteristic equation for the aystem (6.%)

' d
[P+ gu/oha P + 1+ 0 (0)] (b + goho™) = — 2o S (uha + 0(e) (8.9

has the roots p,, P,;, Py which are given by
- -3 8fo
= — goho™/t ~— 2goho P u P T Olgr+e) (6.8)
d
Re py, 5 = — 0.5geha™" + goha™® S 4 O (g3 +e)
The stability criterion for the circular orbit is found from (6.6) as

d
; Ez{—: tofo™t | < 0.5+ O (ego™ + go) (6.7)
with (6.2) and (2.4) taken into account, the inequality (6,7) becomes
dlnQ
TTare +2|<0-5+0 (egs + o) (6.8)

Let the atmosphere rotate about the Earth with a constant angular velocity
1 . The stationary solution of the system (6.1) corresponds to the circular
orblt of the satellite which 1s at rest relative to the atmosphere. This
motion will be unstable due to the action of the atmosohere since (6.8) is
not fulfilled.

During the derivation of {6.8) it was assumed that the small quantity ¢
is a higher order than ¢, . Also, the effect of the noncentral character
of the gravitational field is neglected in comparison with the effect of the
atmosphere.
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Permanant rotations of a heavy rigld body were discovered by Mlodzeevskill
[1] and Staude [2].

The necessary conditions for the stablility of permanent rotations of a
heavy rigid body were investigated by Grammel [3]. The sufficient conditions
for stability of permanent rotations both for a general case with arbitrary
mass distribution inside the body, and for a number of speclal cases were
derived by Rumiantsev [4]. A detalled investigation of permanent rotations
of a gyrostat moving by inertla, and of its stabllity is due to Volterra[S5].
A geometrical interpretation of the motion of a gyrostat in the latter case
was given for the first time by Zhukovskil [6]. ™e problem of distribution
of permanent axes of rotation of a heavy gyrostat has been partially solved
by Anchev [7] and Drofa [8]. The necessary and sufficient conditions of
Ftability for certain motions of heavy gyrostats were found by Rumiantsev

9].

In this work we determine the permanent axes of rotation of a gyrostat
under the action of forces resulting from a force function U , and depend-
ing only on the position of the gyrostat.

We assume that the gyrostat § consists of the rigid body S5, having a
fixed point ¢ and of the bodies S; Joined nonpermanently with & . The
angular momentum of the bodies &, in their motion with respect to the body
S, 1s assumed to be constant. We shall investigate the stability of certaln
motions of the gyrostat using the second method of Liapunov.

1. The orlentation of the rectanguliar axes O0X¥Z determine the position
of the gyrostat S with the fixed point 0 . The axes OXY¥Z are fixed in



