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SATELLITE 

DRAG 

The equations of motion for an Earth satellite were derived in the paper [I]. 
These equations were used to Investigate the effeots of the noncentral char- 
acter of the Earth gravitational field. The present derivation of the equa- 
tions of motion for a satellite takes Into account atmospheric drag. As was 
indicated In [2] (p.92), the atmospheric effects are difficult to take into 
account for many methods of trajectory computation. 

1. The notation adopted In 111 is used In the present paper. The origin 
of a fixed system of coordinates 0, 5, Y> .? with unit vectors i,, i,, 1, 
is located at the center of the Earth. The a-axis Is directed toward the 
north pole. The location of a point M(.r, y, a) Is determined by means of 
the spherical coordinates r,e, 1 

z = r sin6 cos?u, y = r sin 6 sin h, z = rcos6 (I.11 
The coordinate trlhedron of the spherical system of coordinates Is denoted 

by e,, aa* ea. A point with unit mass (satellite) Is moving under the action 
of the forces of attraction and atmospheric resistance. 
of the point H is of the form ([2], p.75) 

The potentlal.energy 

n (u, y) = --&la - sus (l - 3.y3 - . . . (Ii = r-1, y = eos6) (1.2) 
It Is assumed that the Earth's atmosphere rotates about the z-axis with 

angular velocity G(u, v) which depends on a = r-r and y = cos6. 

It Is regarded that the force F of atmospheric resistance Is directed 
opposite to the satellite velocity relative to the atmosphere 

F = - P(u,~,v)(v - n X r), 0 =i& ("Z) 
dt (1.3) 

Here p 1s the experimental proportionality coefficient, P is the radius 
vector of the point !i . The derivation utilizes the orbSta1 set e,,s,,n, 
where 

et = fr-1, n=(rXdr/dt)irXdr/dtj+, eW== n x er (1.4) 
2. The satellite equation of motion 

d+/dP=-gradII--p(dr/dt-Qxrr) (2.1) 
is transformed Into a form convenient for computation. Let us Introduce the 
angular momentum vector 

k=r x drjdt, k =nk (2.3) 

gubstltutlng the vector r = rerp into (2.1) and dot multiplying by 8, we 

get 
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d2r / dt2 - k2 / r2 = -an / ar - pdr / dt (2.3) 

Introduce a change of variables 

u = r-l, @ = u2dt = re2dt (2.4) 

In view of (2.4), Equation (2.3) Is transformed into the form 

db / dq= + (p / ua)du I dq + hu = ---XI / au (A = k2) (2.5) 

Substituting r = PI, Into (2.2) and cross multiplying by & we get 

. de, i dt = r+k x e,, de,l dq = k X e, (2.6) 

Differentiating (2.6) with respect to (O we find 

@e,. i d@ + kae, = dk / d9 x e, 

Prom (2.2) and (2.1) we find 

(2.7) 

dk/dt==-r x ((aII/ar)e,.+ l/r(aKI/M)e,)-ppr xdrjdtf 

+ pr x (Q x r):= (- alI i 89) eh - pk + pr*Q [ia - c, (be,.)] (2.8) 

Substituting (2.8) into (2.7) and In view of (2.4), we get 

(2.9) 

Dot multiplying (2.9) by 1, we obtain the eWation for Y 

$+ -&;$+,.,=(+I)+ (h = ka, 7 = cos 6) (2.10) 

The quantity h is contained in Equations (2.5) and (2.10). We find the 
differential equation for h by dot multiplying (2.8) by 2k nnd taking 
into account the substitution (2.4) 

dh 2 aII dy -=:- --- 
dq u= ar dv 

- $f + F [h (f _ 72) _ (-.$)"]" 

At the same tlm we utilize the equalities 

an LNI dy al-I de, 
Be,.k=--(i3Xe,)*kcosec@=ayisX(kXe,)=-is*- 

8~ d6 

(i3.k)3=k3-(i3Xk)3=h-~i3X(e,.X~~’= ar d’ 

(2.11) 

(2.12) 

aII d7 
=arTiiy 

(2.23) 

The system of equations (2.5), (2.10), (2.11) Is of fifth order and Is 
complete. For p = 0 the second form of the equations of motion Is obtained 
Cll. The time t is found from (2.4) by quadrature. 

3. Equation (2.9) can be utilized to find the longitude angle X . Pro- 
Jectlng it in the X- and y-axes we obtain the differential equations 

for the dii'ection cosines ~1, yz where 

rl = sin 6 cash, ~~ = sin 6 sin h, e, = +f,i, + y& + yi, 

It Is more convenient to determine k from the relationships 

(3.2) 
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If Y and h are known functions of 
ture. The angular velocity dX/dm , 

(r , then 1 1s found by quadra- 

Equation 
on the strength of (3.1), satisfies 

(3.4) 

which can be used for checking during computations. The projection of k 
on the r-axis Is 

x =k.is = h(i- TZ)- ($J]" =(I _ ra) s (3.5) 

The equation for I( Is found from (3.4) as 

(3.6) 

4. As was Indicated In 133 (p.209), there Is a high velocity air current 
moving from west to east at high altitudes around the Earth. This Is evl- 
dented by the fact that the angular velocity n of the atmosphere at high 
altitudes can differ substantially from the Earth's rotation rate. 

Let us find the expression for R by means of motion characteristics 
which can be determined by observation. 
and (2.11) posses the energy Integral 

If p-0, then Equations (2.5) 

E = II + ‘1s (du / dq)a + ‘/a hu2 (4.1) 

For p # 0 the quantity E will be variable. From (2.5), (2.11) and 
(3.5) we find the equation for E as 

dE 

Y&7== 
- $(E-nn)+$& 

From (3.6) and (4.2) we find n 

S-2 = (2E-2l-Lxd$) (“f y$$-’ 

(4.2) 

(4.3) 

The quantities E, x can be found from observation of the satellite 
motion. These quantities change by small amounts during the motion 

dr 
x = ia-(r x v), E = n + l/s+, v=x (4.4) 

Formula (4.3) Is essentially slmpllfled for equatorlal, near circular 
trajectories when 7 ~0. 

5. Let us consider a unit sphere with center at the origin of the coor- 
dinates 0, X, y, I . 

During motion the radius vector r of the point M generates a line on 
the sphere the length r of which will be taken as the Independent variable 

&=+Irxdr1 =,-zj,xdr/dtIdt=r-zkdt=(h~/‘d~ (5.1) 

Transforming Equations (2.5), (2.10) and (2.11) with the variable 7 and 
denoting differentiation with respect to T by primes, we obtain the system 
of differential equations 

(5.2) 

(5.3) 

(5.4) 
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The first form of the equations of motion cl] is obtained when p - 0 . 

Let us consider the plane of the orbit which contains the vectors o and 
dr/dt . Tfie inclination angle of the orbital 
rial plane will be denoted by t . Wrom (2.13 P 

lane relative to the equato- 
we have 

cos i -_ n .i, = k *i,h+ = (1 - yz - y'8)"' (5.5) 

Denoting L = CO8 t , we obtain from (5.3) Equation for L 

l'= &+ 1 + &.z (5.6) 

Equations (5.2) to (5.4) are especially convenient for Investigation of 
polar orbit of the satellite when L = cos t w 0 . Similarly we can derive 
the equations which correspond to the third form of the satellite equations 
of motion El]. These equations are convenient for lnvest~gati~ the near 
circular trajectories. 

6. As an example of use of Equations (5.2) to (5.4) we consider the ques- 
tion of stablllty of a circular equatorial orbit. Let during motion r E 0. 
EqUatiOns (5.2) to (5.4) become 

a" + gfh-'u' + u = h-1 Ip + 3e.9 + 0 (G)lr h’=Zg[--l/h-tfl (6.1) 

g = pu-a, f = &i-a 6.2) 
ft is.noted that the quantity f depends only on u l Equations (6.1) 

have a stationary solution ue, hc which Is defined by Equations 

u = A-1 [p -t- 3eus f 0 {G) ],j h = p (6.3) 
The value of the functions for the generating solution ~0, ho will be 

denoted by the subscript e . Equationa III variations for (6.1) are of the 
fOXVll 

624” + g,f0kl-l624’ + (1 + 0 (e)) 6u = - (pho-0 + 0 (e)) Sh 

6k’ = - g&-” Sh + 2ga da dfo&& 

The characteristic equation for the system (6.4) 

dfo 
IP + gofbho-“p + i+ 0 (s)l (P + goK”‘f = - 2go du(t (p&l* + 0 @)I 

has the roots pl, per ps which are given by 

pl = -goho-'/* -2g,hCi+L + O(g'-t_ e) (6.6) 

Reps,s = -~.5g&-'~*+ g&0 
-s dfo 

du II +Q(k+e) 

The stability criterion for the circular orbit is found Prom (6.6) as 

I 

GO 
duo udo-1 

I 
< f-l.5 + 0 (ego-’ f go) (6.7) 

With (6.2) and (2.4) taken Into account, the Inequality (6.7) benoma 
dlnC& 
- f2 [<0.5$-O WO-l+gO) dln ro V3.8) 

n. 
Let the atmosphere rotate about the Earth with a constant angular velocity 
The stationary solution of the system (6.1) corresponds to the circular 

orbit of the satellite which is at rest relative to the atmosphere. This 
motion will be unstable due to the action of the atmoaohere since (6.8) 2s 
not fulfilled. 

During the derivation of (6.8) it was assumed that the small quantity c 
is a higher order than &, . Also, the effect of the noncentral character 
of the gravitational field is neglected In comparison with the effect of the 
atmosphere. 
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Permanant rotations of a heavy rigid body were discovered by Mlodzeevskll 
Cl] and Staude [23. 

The necessary conditions for the stability of permanent rotations of a 
heavy rigid body were Investigated by Crammel [3]. The sufficient conditions 
for stability of permanent rotations both for a general case with arbitrary 
mass distribution Inside the body, and for a number of special cases were 
derived by Rumlantsev [4]. A detailed Investigation of permanent rotations 
of a gyro&at moving by Inertia, and of Its stability Is due to Volterra[5]. 
A geometrical Interpretation of the motion of a gyrostat in the latter case 
was given for the first time by Zhukovskll C63. The problem of distribution 
of permanent axes of rotation of a heavy gyrostat has been partially solved 
by Anchev 173 and Brofa C83. The necessary and sufficient conditions of 
stability for certain motions of heavy gyrostats were found by Rumlantsev 
c91. 

In this work we determlne the permanent axes of rotation of a gyrostat 
under the action of forces resulting from a force function (I , and depend- 
ing only on the position of the gyrostat. 

We assume that the gyrostat s consists of the rigid body Sl, havl~~~ 
fixed point 0 and of the bodies S. joined nonpermanently with S, . 
angular momentum of the bodies Sp In their motion with respect to the body 
S1 Is assumed to be constant. We shall Investigate the stability of certain 
motions of the gyrostat using the second method of Llapunov. 

The orientation of the rectanguial, axes 
of the gyrostat S with the fixed point 0 . 

OXYZ determine the position 
The axes CXYZ are fixed In 


